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Abstract
We will present a new extension of the standard model of particle physics in its
almost-commutative formulation. This extension has as its basis the algebra
of the standard model with four summands (Iochum et al 2004 J. Math. Phys. 45
5003 (Preprint hep-th/0312276), Jureit J-H and Stephan C 2005 J. Math. Phys.
46 043512 (Preprint hep-th/0501134), Schücker T 2005 Krajewski diagrams
and spin lifts Preprint hep-th/0501181, Jureit et al 2005 J. Math. Phys. 46
072303 (Preprint hep-th/0503190), Jureit J-H and Stephan C 2006 On a
classification of irreducible almost commutative geometries: IV (Preprint hep-
th/0610040)), and enlarges only the particle content by an arbitrary number
of generations of left–right symmetric doublets which couple vectorially to the
U(1)Y × SU(2)w subgroup of the standard model. As in the model presented
in Stephan (2007 Almost-commutative geometries beyond the standard model:
II. New Colours Preprint hep-th/0706.0595), which introduced particles with
a new colour, grand unification is no longer required by the spectral action.
The new model may also possess a candidate for dark matter in the hundred
TeV mass range with neutrino-like cross section.

PACS numbers: 02.40.Gh, 11.15.Bt, 12.60.−i
Mathematics Subject Classification: 81T13

1. Introduction

In this paper, we present an extension of the standard model by an arbitrary number of left–
right symmetric doublets which couple vectorially to the U(1)Y × SU(2)w subgroup of the
standard model. We will call these particles for simplicity vector doublets. This extension is
done within the framework of noncommutative geometry which was pioneered by Connes [1].
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It extends the standard model as presented in the recent formulation of almost-commutative
geometry [2–4] which is a slight modification of the original formulation [5].

The model treated here is the third viable extension of the standard model, following the
AC model [6] and a model which realises Okun’s θ -particles [7] within almost-commutative
geometry [8]. These extensions are very rare because the constraints on the models from the
axioms of almost commutative geometry and the spectral action are severe. Nevertheless, at
least the AC model exhibits a viable dark matter candidate [9]. This might also be true for the
vector doublet model presented here.

As a basis for the vector doublet model we take the formulation of the standard model
with four summands in the matrix algebra, which was found in the classification of almost-
commutative geometries [10, 11]. The vector doublet model has many similarities to the
θ -model; notably the constraints on the gauge couplings of the model no longer resemble
those of grand unified theories.

Adding vector doublets has a rather small effect on the Higgs mass, but lowers the cut-off
scale of the spectral action considerably. This may provide a natural explanation for the
possible masses of the vector doublets which are in the upper TeV scale. Here we will not
consider mixing of the generations, but this should certainly be investigated more closely since
it may provide a clue to the matter–antimatter asymmetry of the universe.

The paper is organized as follows. We first give the basic notions of a spectral triple, the
main building block of noncommutative geometry. Then we quickly review how the Yang–
Mills–Higgs model is obtained via the fluctuated Dirac operator and the spectral action. This
account is far from exhaustive, and we refer to [ 4, 5, 12] for a detailed presentation.

For the vector doublets, the details of the spectral triple and the lift of the automorphisms
are given. The Lagrangian and the constraints on the couplings are calculated, and we give a
short summary of the mass splitting of the doublet components due to radiative corrections.
With the help of the one-loop renormalization group equations, the Higgs boson mass and the
cut-off scales are calculated for up to three generations of vector doublets.

2. Finite spectral triples

In this section, we will give the necessary basic definitions of almost commutative geometries
from a particle physics point of view. For our calculations, only the finite part matters, so we
restrict ourselves to real, finite spectral triples in KO-dimension 6: (A,H,D, J, χ). Note
that in the literature before [2–4], the finite part of the spectral triple was considered to be of
KO-dimension zero. The change in this algebraic dimension amounts to some sign changes,
i.e. the commutator for the real structure and the chirality changes into an anti-commutator
and the anti-particles have opposite chirality with respect to the particles.

2.1. Basic definitions

The algebra A is a finite sum of matrix algebras A = ⊕N
i=1Mni

(Ki ) with Ki = R, C, H, where
H denotes the quaternions. A faithful representation ρ of A is given on the finite dimensional
Hilbert space H. The Dirac operator D is a self-adjoint operator on H and plays the role
of the fermionic mass matrix. J is an anti-unitary involution, J 2 = 1, and is interpreted as
the charge conjugation operator of particle physics. The chirality χ is a unitary involution,
χ2 = 1, whose eigenstates with eigenvalue +1(−1) are interpreted as right (left) particle states
and −1(+1) for right (left) anti-particle states. These operators are required to fulfil Connes’
axioms for spectral triples:

• [J,D] = {J, χ} = {D, χ} = 0,
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[χ, ρ(a)] = [ρ(a), Jρ(b)J−1] = [[D, ρ(a)], Jρ(b)J−1] = 0,∀a, b ∈ A.
• The chirality can be written as a finite sum χ = ∑

i ρ(ai)Jρ(bi)J
−1. This condition is

called orientability.
• The intersection form ∩ij := tr(χρ(pi)Jρ(pj )J

−1) is non-degenerate, det ∩ �= 0. pi are
minimal rank projections in A. This condition is called Poincaré duality.

Now the Hilbert space H and the representation ρ are decomposed into left and right, particle
and anti-particle spinors and representations respectively:

H = HL ⊕ HR ⊕ Hc
L ⊕ Hc

R ρ = ρL ⊕ ρR ⊕ ρc
L ⊕ ρc

R.

In this representation, the Dirac operator has the form

D =




0 M 0 0
M∗ 0 0 0

0 0 0 M
0 0 M∗ 0


 ,

where M is the fermionic mass matrix connecting the left- and the right-handed fermions.
Since the individual matrix algebras have only one fundamental representation for

K = R, H and two for K = C (the fundamental one and its complex conjugate), ρ may
be written as a direct sum of these fundamental representations with multiplicities

ρ
(⊕N

i=1 ai

)
:= (⊕N

i,j=1 ai ⊗ 1mji
⊗ 1(nj )

) ⊕ (⊕N
i,j=1 1(ni ) ⊗ 1mji

⊗ aj

)
.

The first summand denotes the particle sector and the second the anti-particle sector. For the
dimensions of the unity matrices, we have (n) = n for K = R, C and (n) = 2n for K = H

and the convention 10 = 0. The multiplicities mji are non-negative integers. Acting with the
real structure J on ρ permutes the main summands and complex conjugates them. It is also
possible to write the chirality as a direct sum

χ = (⊕N
i,j=1 1(ni ) ⊗ χji1mji

⊗ 1(nj )

) ⊕ (⊕N
i,j=1 1(ni ) ⊗ (−χji)1mji

⊗ 1(nj )

)
,

where χji = ±1 according to the previous convention on left (right) handed spinors. One
can now define the multiplicity matrix µ ∈ MN(Z) such that µji := χjimji . This matrix
is symmetric and decomposes into a particle and an anti-particle matrix, the second being
just the particle matrix transposed, µ = µP + µA = µP − µT

P . The intersection form of the
Poincaré duality is now simply ∩ = µ − µT , see [13]. Note that in contrast to the case of
KO-dimension zero, the multiplicity matrix is now anti-symmetric rather than symmetric.

2.2. Obtaining the Yang–Mills–Higgs theory

To complete our short survey on the almost-commutative standard model, we will give a brief
glimpse on how to construct the actual Yang–Mills–Higgs theory. We started out with the fixed
(for convenience flat) Dirac operator of a four-dimensional spacetime with a fixed fermionic
mass matrix. To generate curvature, we have to perform a general coordinate transformation
and then fluctuate the Dirac operator. This can be achieved by lifting the automorphisms
of the algebra to the Hilbert space, unitarily transforming the Dirac operator with the lifted
automorphisms and then building linear combinations. Again we restrict ourselves to the finite
case. Except for complex conjugation in Mn(C) and permutations of identical summands in
the algebra A = A1 ⊕A2 ⊕ · · ·⊕AN , every algebra automorphism σ is inner, σ(a) = uau−1

for a unitary u ∈ U(A). Therefore, the connected component of the automorphism group is
Aut(A)e = U(A)/(U(A) ∩ Center(A)). Its lift to the Hilbert space [14]

L(σ ) = ρ(u)Jρ(u)J−1
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is multi-valued. To avoid the multi-valuedness in the fluctuations, we allow a central extension
of the automorphism group.

The fluctuation fD of the Dirac operator D is given by a finite collection f of real numbers
rj and algebra automorphisms σj ∈ Aut(A)e such that

fD :=
∑

j

rjL(σj )DL(σj )
−1, rj ∈ R, σj ∈ Aut(A)e.

We consider only fluctuations with real coefficients since fD must remain self-adjoint. The
sub-matrix of the fluctuated Dirac operator fD, which is equivalent to the mass matrix M, is
often denoted by ϕ, the ‘Higgs scalar’, in the physics literature. But one has to be careful, as
will be shown below explicitly. It may happen that the lifted automorphisms commute with the
initial Dirac operator and one finds fD = ∑

i riD for the finite part of the spectral triple. This
behaviour appeared for the first time in the electro-strong model in [11], where the fermions
couple vectorially to all gauge groups and no Higgs field appears. In the model presented
below, the spectral triple can be decomposed into a direct sum consisting of the standard
model and two new particles. The initial Dirac operator of the new particles commutes with
the corresponding part of the lift and thus does not participate in the Higgs mechanism.

An almost commutative geometry is the tensor product of a finite noncommutative triple
with an infinite, commutative spectral triple. By Connes’ reconstruction theorem [15, 16]
it is known that the latter comes from a Riemannian spin manifold, which will be taken to
be any four-dimensional, compact manifold. The spectral action of this almost-commutative
spectral triple is defined to be the number of eigenvalues of the Dirac operator fD up to a
cut-off �. Via the heat-kernel expansion one finds, after a long and laborious calculation
[4, 5], a Yang–Mills–Higgs action combined with the Einstein–Hilbert action and a
cosmological constant:

SCC[e,AL/R, ϕ] = tr

[
h

(
fD2

�2

)]

=
∫

M

{
2�c

16πG
− 1

16πG
R + a(5R2 − 8RµνR

µν − 7RµνλτR
µνλτ )

+
∑

i

1

2g2
i

trF ∗
iµνF

µν

i +
1

2
(Dµϕ)∗Dµϕ

+ λ tr(ϕ∗ϕ)2 − 1

2
µ2 tr(ϕ∗ϕ) +

1

12
tr(ϕ∗ϕ)R

}
dV + O(�−2), (2.1)

where h : R+ → R+ is a positive test function. The coupling constants are functions of the
first moments h0, h2 and h4 of the test function:

�c = α1
h0

h2
�2, G = α2

1

h2
�−2, a = α3h4,

g2
i = α4i

1

h4
, λ = α5

1

h4
, µ2 = α5

h2

h4
�2.

(2.2)

The curvature terms Fµν and the covariant derivative Dµ are in the standard form of Yang–
Mills–Higgs theory. The constants αj depend in general on the special choice of the matrix
algebra and on the Hilbert space, i.e. on the particle content. For details of the computation,
we refer to [4, 5].

This action is valid at the cut-off � where it ties together the coupling constants gi of
the gauge connections and the Higgs coupling λ since they originate from the same heat-
kernel coefficient. For the standard model with three generations the calculation of the gauge
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couplings in (2.2) imposes at � conditions on the U(1)Y , SU(2)w and SU(3)c couplings g1, g2

and g3, respectively, comparable to those of grand unified theories:

5g2
1 = 3g2

2 = 3g2
3 . (2.3)

But since the lift of the automorphisms produces extra free parameters through the U(1) central
charges the first equality can always be modified by a different choice of the central charge.
Therefore, only the gauge couplings of noncommutative gauge groups underlie constraints
from the spectral action.

In the same way as for the gauge couplings, the spectral action also implies constraints
for the quartic Higgs coupling λ and the Yukawa couplings. The full set of constraints for the
standard model reads [2, 4, 17]

3g2
2 = 3g2

3 = 3
Y 2

2

H

λ

24
= 3

4
Y2. (2.4)

Here Y2 is the sum of all Yukawa couplings gf squared and H is the sum of all Yukawa couplings
raised to the fourth power. Our normalizations are mf = √

2(gf /g2)mW, (1/2)(∂ϕ)2 +
(λ/24)ϕ4.

As we will see in the following, the grand unified constraint g2
2 = g2

3 at the cut-off � is
a very special case. It is valid for the standard model, but in general it will not hold. The
model presented in this paper is one more example for different constraints for g2 and g3 at
the cut-off energy. For possible extensions of the standard model within the framework of
almost-commutative geometry, these constraints may limit the particle content in a crucial
way.

3. The spectral triple

The model presented here is based on the spectral triple of the standard model with four
summands in the matrix algebra [11]. In contrast to previous extensions of the standard model
[6, 8], the algebra is not enlarged:

A = ASM = H ⊕ C ⊕ M3(C) ⊕ C 
 (a, b, c, d). (3.1)

Instead, we enlarge the standard model by adding an a priori arbitrary number of generations
of SU(2)w vector doublets. As we will see later, anomaly cancellation also requires vector-like
hypercharges. The representation of the algebra for these new particles is

ρL(d) = d12, ρR(b) = b̄12, ρc
L(a) = a, ρc

R(a) = a. (3.2)

One sees immediately the vector-like coupling to the quaternion sub-algebra in the anti-
particle part of the representation. This results in a vector-like coupling to the SU(2)w
subgroup of the standard model. Requiring the model to be anomaly free will induce
the vector-like hypercharge coupling. Note that these vector doublets do not satisfy all
the physical requirements which had been put forward in [11] to classify almost-commutative
geometries. Notably the requirement of an unbroken colour group is not satisfied since
the SU(2)w subgroup acts as a colour for the vector doublets and is broken by the Higgs
mechanism.

The complete representation for the model is the direct sum of the standard model
representation and the representation for the vector doublets:

ρ = ρSM ⊕ ρvec with ρvec(a, b, d) = ρL(d) ⊕ ρR(b) ⊕ ρc
L(a) ⊕ ρc

R(a). (3.3)

The same holds for the Hilbert space, H = HSM ⊕Hnew. For N generations of vector doublets,
their Hilbert space is

Hvec = (C ⊗ C
2 ⊗ C

N)L ⊕ (C ⊗ C
2 ⊗ C

N)R ⊕ anti-particles. (3.4)
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The dimension of Hvec depends on the number of generations N of vector doublets and reads
dim(Hvec) = 8N .

We will denote the spinors of the vector doublets ψ1 and ψ2 which are both hypercharge
singlets (

ψ1

ψ2

)
L

⊕
(

ψ1

ψ2

)
R

⊕
(

ψc
1

ψc
2

)
L

⊕
(

ψc
1

ψc
2

)
R

∈ Hvec. (3.5)

The Dirac operator contains the masses of the vector doublets and a CKM-like matrix which
mixes the generations in the case of N � 2. For a first analysis of the model, we will consider
the CKM-like matrix to be the unity matrix. A nontrivial mixing matrix may be interesting
when considering leptogenesis-like processes to explain the particle–anti-particle asymmetry
in the universe.

The Dirac operator for one generation of vector doublets is

Dvec =




0 Mvec 0 0
M∗

vec 0 0 0
0 0 0 Mvec

0 0 M ∗
vec 0


 with Mvec = mψ12. (3.6)

From the Krajewski diagram, figure 1 in the appendix, it is straightforward to see that all the
axioms for the spectral triple are fulfilled. The second possibility of realising vector doublets
is depicted in the second Krajewski diagram, figure 2 in the appendix. This model exhibits
essentially the same features as those presented above; only the sign of the hypercharges for
the vector doublets is reversed.

4. The gauge group, the lift and the constraints

The automorphisms that have to be lifted coincide with the group of unitaries of the
noncommutative part of the algebra [12]:

Unc(A) = SU(2)w × U(3) 
 (v,w). (4.1)

Defining u := det(w) ∈ U(1), the particle part of the lift decomposes into a left-handed part
and a right-handed part:

L(v, up1 , up2w, up3) = LL(v, up1 , up2w) ⊕ LR(v, up2w, up3) (4.2)

with pi, qi ∈ Z. We will impose here that the standard model remains unchanged, i.e. that
all the charges are the standard ones. From the standard model, part of the lift then follows
p1 = −p3 = −1/2 and p2 = 1/6 − 1/3 through the requirement of anomaly cancellation.
This reduces U(3) to U(1)Y × SU(3)c in the correct representation.

The exact form of the lift for the vector doublets is given by

Lvec(v, up1 , up3) = diag[up1v, u−p3v], (4.3)

which is automatically anomaly free. We now see that the hypercharges of the vector doublets
have been determined by fixing the hypercharges of the standard model. Therefore, the
almost-commutative version of vector doublets is far more constrained than vector doublets
in the general Yang–Mills–Higgs setting where the hypercharges are free parameters.

One immediately sees that the vector doublets have the same charge assignment as the left-
handed electron-neutrino doublet. Therefore, the electro-magnetic charge of the components
of the vector doublets are Qel = −e for ψ1 and Qel = 0 for ψ2. We will henceforth call
ψ1 =: ψ− and ψ2 =: ψ0. This charge assignment is summarized in table 1. For the model
derived from the Krajewski diagram in figure 2, one finds a hypercharge charge assignment
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Table 1. Charge assignment for a negatively charged component.

I I3 Yvec Qel

(ψ1)L,R = ψ−
L,R 2 − 1

2 − 1
2 −e

(ψ2)L,R = ψ0
L,R 2 + 1

2 − 1
2 0

Table 2. Charge assignment for a positively charged component.

I I3 Yvec Qel

(ψ1)L,R = ψ0
L,R 2 − 1

2 + 1
2 0

(ψ2)L,R = ψ+
L,R 2 + 1

2 + 1
2 +e

with opposite signs and therefore opposite electro-magnetic charges; see table 2. We will
henceforth concentrate on the first case with ψ− and ψ0.

Since the vector doublets couple has vector-like couplings to the gauge group, the mass
matrix Mnew commutes with the lift Lnew and it follows from the the inner fluctuations that
the masses have no connection to the standard model Higgs field∑

j

rjLL,vecMvecL
−1
R,vec =

∑
j

rjMvec =: Mvec. (4.4)

Therefore, Mvec contains the gauge invariant masses of the vector doublets where the real
numbers ri are determined by the standard model part. This phenomenon of gauge invariant
masses in almost-commutative geometry appeared first in the case of the electro-strong
model [11]. It also appears in the AC model [6] and in the standard model with Majorana
neutrinos [4].

From the spectral action, one now immediately obtains the Lagrangian for the new
particles:

Lvec = +i
∑

i=1,...,N

(ψ̄−, ψ̄0)iLDψ

(
ψ−

ψ0

)i

L

+ i
∑

i=1,...,N

(ψ̄−, ψ̄0)iRDψ

(
ψ−

ψ0

)i

R

−
∑

i=1,...,N

(ψ̄−, ψ̄0)iLMi
vec

(
ψ−

ψ0

)i

R

+ Hermitian conjugate, (4.5)

where the covariant derivatives are given by

Dψ = ∂µ + ig1
Yvec

2
Bµ + ig2W

k
µ

τk

2
. (4.6)

Here, g1 and g2 are the standard model U(1)Y and SU(2)w gauge couplings with their
corresponding generators respectively.

From the spectral action, it is now easy to calculate the constraints on the gauge couplings,
the quartic Higgs coupling and the Yukawa couplings at the cut-off �. The normalization of
the quartic Higgs coupling is taken to be the same as for the standard model. Then the new
constraints read(

3 +
N

2

)
g2

2 = 3g2
3 = 3

Y 2
2

H

λ

24
= 3

4
Y2. (4.7)

Y2 and H include the Yukawa couplings of the standard model including a large Yukawa
coupling for the τ -neutrino [4]. We do not have any constraints on g1 since the central charges
that enter through the lift are free parameters.
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This model has again the feature that models beyond the standard model in almost-
commutative geometry will in general not exhibit the constraint g2 = g3 from grand unified
theories. A similar constraint as in (2.4) already appeared in the model presented in [8].

In the following, we will neglect all standard model Yukawa couplings except the top
quark coupling gt and the τ -neutrino Yukawa coupling gν which are adjusted to reproduce
the correct top quark mass [4]. We will not go into the details of the seesaw mechanism in
almost-commutative geometry, but refer to [4, 18]. Under these assumptions, the relevant
constraints on the couplings at the cut-off � read

g2
3 =

(
1 +

N

6

)
g2

2 (4.8)

g2
t = 4 + 4N

6

3 + R2
g2

2 with R := gν

gt

(4.9)

λ = 8

(
3 +

N

2

)
3 + R4

(3 + R2)2
g2

2 (4.10)

The ratio R of the Yukawa coupling gν of the τ -neutrino and the top quark Yukawa coupling
gt is fixed by the requirement that the renormalization group flow produces the measured pole
mass of the top quark, mt = 170.9 ± 1.8 GeV [25].

5. Radiative corrections to the vector doublet masses

The masses of the two components ψ− and ψ0 of the vector doublet are a priori degenerate,
mψ− = mψ0 = mψ . But this degeneracy will split due to radiative corrections for energies
below the mass of the Z-boson mZ . For a detailed phenomenological discussion, see [19].

The calculations are well known, and we will only give the result for the mass splitting.
Defining r = (mψ

mZ

)2
, one finds for the mass difference

�mψ = α

2
MZf (r) with f (r) =

∫ 1

0
(2 − x) ln

(
1 +

x

(1 − x)2r

)
, (5.1)

where the charged particle is heavier than its neutral partner, mψ− = mψ0 + �mψ . Taking the
limit mψ � mz, i.e. r � 1, which will be interesting from the dark matter point of view, one
finds the asymptotic mass difference �mψ = 1

2αMZ � 355 MeV. It is also interesting to note
that the lifetime of the charged particle is rather short with 0.5 to 2 ns [20].

Since there are no terms in the Lagrangian coupling the vector bosons to standard model
particles, we will consider the neutral particle as stable. It behaves essentially like a neutrino
and its spin-independent cross section is of the same order, σsi ∼ 10−39 cm2. If these particles
are heavy enough mψ > 10 TeV, they can escape direct detection since current experiments
are not sensitive for ultramassive dark matter particles. Below ∼10 TeV, vector doublets can
be excluded as a dark matter candidate [21]. It has also been shown that neutrino-like particles
with masses from 250 TeV to 550 TeV may saturate the dark matter abundance of the universe
[22]. If the vector doublets are heavier than 550 TeV, they will over-close the universe. We
will, therefore, concentrate on the mass region between 10 TeV and 550 TeV.

6. The renormalization group equations

We will now give the one-loop β-functions of the standard model with three generations of
standard model particles, N generations of vector doublets. They will serve to evolve the
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constraints (4.7) from E = � down to our energies E = mZ . We set: t := ln(E/mZ),

dg/dt =: βg, κ := (4π)−2. We will neglect the running of the gauge invariant masses of
the vector doublets and treat them as free parameters. Furthermore, all threshold effects will
be neglected.

The β-functions for the standard model with N generations of vector doublets are [23, 24]

βgi
= κbig

3
i , bi =

(
41

6
+

2

3
N,−19

6
+

2

3
N,−7

)
, (6.1)

βt = κ

[
−

∑
i

cu
i g

2
i + Y2 +

3

2
g2

t

]
gt , (6.2)

βλ = κ

[
9

4

(
g4

1 + 2g2
1g

2
2 + 3g4

2

) − (
3g2

1 + 9g2
2

)
λ + 4Y2λ − 12H + 4λ2

]
, (6.3)

with

ct
i =

(
17

12
,

9

4
, 8

)
, Y2 = 3g2

t , H = 3g4
t . (6.4)

The Yukawa coupling of the τ -neutrino can be neglected in the evolution of the renormalization
group equations, since the seesaw mechanism renders it small compared to the top quark
Yukawa coupling.

The gauge couplings decouple from the other equations and have identical evolutions in
both energy domains:

gi(t) = gi0
/√

1 − 2κbig
2
i0t . (6.5)

The initial conditions are taken from experiment [25]:

g10 = 0.3575, g20 = 0.6514, g30 = 1.221. (6.6)

Then the unification scale � is the solution of
(
1 + N

6

)
g2

2(ln(�/mZ)) = g2
3(ln(�/mZ)):

� = mZ exp
g−2

20 − (
1 + N

6

)
g−2

30

2κ
(
b2 − (

1 + N
6

)
b3

) , (6.7)

and depends on the number of generations of vector doublets N.

7. The Higgs boson mass

The aim is now to calculate the mass of the Higgs boson, mH, fixing the quartic coupling λ

at the cut-off � and then evolving it down to the pole mass with the renormalization group
equations. We require that all couplings remain perturbative and we obtain the pole masses of
the Higgs boson and the top quark:

m2
H = 4

3

λ(mH)

g2(mZ)2
m2

W, mt =
√

2
gt (mt)

g2(mt)
mW . (7.1)

As experimental input we have the initial conditions of the three standard model gauge
couplings (6.6) and the mass of the top quark, mt = 170.9 ± 1.8 GeV [25]. As mentioned
before, the masses of the vector doublets are taken to be between 10 TeV and 550 TeV. We
will calculate the mass of the Higgs boson for these two extreme values with the constraints
(4.8) to (4.10).

For the pure standard model, we find a Higgs mass of mH = 167.8+1.8
−1.7 GeV and a cut-off

of � = 1.1 × 1017 GeV. This is in good agreement with previous calculations [4, 18]. We
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Table 3. One generation of vector doublets.

One generation mH �

mψ = 10 TeV 178, 7+0,7
−0,7 GeV 5.3 × 1011 GeV

mψ = 550 TeV 177, 9+0,8
−0,7 GeV 8.5 × 1011 GeV

Table 4. Two generations of vector doublets.

Two generations mH �

mψ = 10 TeV 191, 4+0,3
−0,2 GeV 109 GeV

mψ = 550 TeV 189, 3+0,3
−0,2 GeV 2.1 × 109 GeV

Table 5. Three generations of vector doublets.

Three generations mH �

mψ = 10 TeV 204, 9+0,3
−0,3 GeV 2, 8 × 107 GeV

mψ = 550 TeV 201, 0+0,2
−0,1 GeV 5, 4 × 107 GeV

Table 6. Five generations of vector doublets.

Five generations mH �

mψ = 10 TeV 233, 1+0,9
−0,9 GeV 2, 9 × 105 GeV

mψ = 550 TeV 224, 4+0,5
−0,7 GeV 8, 0 × 105 GeV

will now add subsequently one, two and three generations of vector doublets to the standard
model. To simplify the analysis we will assume the masses of the vector doublets to be equal
and the CKM mixing matrix to be trivial, i.e. the unity matrix. Nontrivial mixing between the
generations may perhaps be interesting when considering the particle–anti-particle asymmetry
in cosmology. Furthermore we will restrict ourselves to the two extrema of the possible masses
for the vector doublets: 10 TeV � mψ � 550 TeV.

For the case of one generation of vector doublets, the Higgs mass and the cut-off scale
are summarized in table 3. Note that the cut-off scale is lowered considerably, by six orders
of magnitude with respect to the pure standard model. This phenomenon has two origins.
On one hand the running of the SU(2)w coupling g2 is diminished due to the presence of the
vector doublets, while the running of the SU(3)c coupling g3 remains unchanged since the
vector doublets are colour singlets. Secondly, the constraint (4.8) on g2 and g3 at the cut-off
gets modified. The effect of the vector doublets on the running of the couplings is rather small
compared to their effect on the constraint (4.8).

For two generations of vector doublets, the Higgs boson mass and cut-off scale are
summarized in table 4. One notes that the influence of the vector doublets on the Higgs mass
is rather small. This should be compared to other models beyond the standard model [8],
which can increase the Higgs mass by up to ∼160 GeV to mHiggs ∼ 380 GeV. Table 5 shows
the Higgs boson masses and the cut-off scales for three generations of vector doublets. To
underline the general behaviour we also give a more extreme case with five generations of
vector doublets, see table 6. Here the cut-off scale has dropped down to the order of the
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vector doublet masses. This is certainly a very interesting feature since it would give a natural
explanation for the mass scale of the vector doublets. Furthermore, the Higgs mass is raised
by ∼65 GeV with respect to the pure standard model. This allows the model to be clearly
distinguished from the almost-commutative standard model by the LHC. The signature for
this model would then be a very heavy Higgs boson and no further particles, since the masses
of vector doublets should be above the energy achieved by the LHC.

8. Conclusions and outlook

We have presented a particle model based on an almost-commutative geometry which contains
the standard model as a sub-model. The spectral triple of the standard model is modified only
slightly, in the sense that the matrix algebra of the standard model stays unchanged and only
an arbitrary number of SU(2)w vector doublets are added.

These vector doublets are anomaly free, but their hypercharges are constrained by the
standard model hypercharges. This results in an electro-magnetically charged component of
the doublet with one electron charge and a neutral component. Here again almost-commutative
geometry is far more restrictive than general Yang–Mills–Higgs theory where in principle any
hypercharge for vector doublets is allowed, and therefore both components of the doublets
may be charged. The masses of the vector doublets are gauge invariant, i.e. they do not couple
to the Higgs boson. Furthermore, the new particles are colour singlets with respect to the
SU(3)c colour group of the standard model.

The neutral particle in the doublet has a slightly lower mass than the charged particle
with a mass difference of �mψ ∼ 350 MeV. This allows the charged particle to decay into
its stable, neutral partner. The spin-independent cross section of the neutral particle is of the
same order of magnitude as a neutrino’s cross section, σsi ∼ 10−39 cm2. If these particles are
sufficiently heavy, they may be interesting dark matter candidates.

Considering masses for the vector doublets between 10 TeV and 550 TeV one finds, when
adding up to three generations to the standard model, only a slight effect of ∼35 GeV on the
Higgs mass. In contrast, the cut-off scale decreases considerably down to ∼107 GeV for three
generations of new particles. This low cut-off scale could explain in a very natural way the
scale of the gauge invariant masses of the vector doublets.

Concluding, one can certainly say that this model seems to be an interesting and promising
extension of the standard model. Open issues are the direct detectability of extremely heavy
vector doublets by experiments such as EDELWEIS and the effect of a nontrivial CKM-like
mixing matrix.
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Appendix. The Krajewski diagram

In this appendix, we present the Krajewski diagrams which were used to construct the model
treated in this publication. Krajewski diagrams do for spectral triples what the Dynkin and
weight diagrams do for groups and representations. For an introduction into the formalism of
Krajewski, we refer to [11, 13]. The Krajewski diagram for the model presented in this paper
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a b b̄ c d d̄

a

b

b̄

c

d

d̄
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Figure 1. Krajewski diagram of the standard model with right-handed neutrino. The anti-particle
part and the arrow representing Majorana masses has not been drawn. The vector doublets are
depicted by the dotted line.

a b b̄ c d d̄

a

b

b̄
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d

d̄

...........................................................
......

Figure 2. Krajewski diagram for the vector doublet model with reversed hypercharges.

is depicted in figure 1. It shows one generation of standard model particles and one generation
of vector doublets.

The arrows encoding the new particles are drawn on the a-line. Note the similarity to the
standard model quark sector which sits on the c-line.

The multiplicity matrix µ associated with the Krajewski diagram in figure 1, with three
generations of standard model particles and N generations of vector doublets, can be directly
read off to be

µ =




0 N 0 −N

0 0 0 0
−3 6 0 0
−3 3 0 3


 . (A.1)

The axiom of the Poincaré duality is fulfilled since det(µ − µt) = 36N2 − 108N + 81 �= 0
for all N ∈ N. Only the right-handed neutrinos violate the axiom of orientability [26], which
is also the case for the pure standard model. It is also possible to reverse the arrow of the new
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particles, exchanging right-handed and left-handed vector doublets. But this does not change
the general result.
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[18] Jureit J-H, Krajewski T, Schücker T and Stephan C A 2007 On the noncommutative standard model Preprint

hep-th/0705.0489
[19] Thomas S and Wells J D 1998 Phenomenology of massive vectorlike doublet leptons Phys. Rev. Lett. 81 34

(Preprint hep-ph/9804359)
[20] Sher M 1995 Charged leptons with nanosecond lifetimes Phys. Rev. D 52 3136 (Preprint hep-ph/9504257)
[21] Cirelli M, Fornengo N and Strumia A 2006 Minimal dark matter Nucl. Phys. B 753 178 (Preprint

hep-ph/0512090)
[22] Griest K and Kamionkowski M 1990 Unitarity limits on the mand radius of dark matter particles Phys. Rev.

Lett. 64 615
[23] Machacek M E and Vaughn M T 1983 Two loop renormalization group equations in a general quantum field

theory: I. Wave function renormalization Nucl. Phys. B 222 83
Machacek M E and Vaughn M T 1984 Two loop renormalization group equations in a general quantum field

theory: II. Yukawa couplings Nucl. Phys. B 236 221

http://www.alainconnes.org/
http://dx.doi.org/10.1088/1126-6708/2006/11/081
http://www.arxiv.org/abs/hep-th/0608226
http://dx.doi.org/10.1063/1.2408400
http://www.arxiv.org/abs/hep-th/0608221
http://www.arxiv.org/abs/hep-th/0610241
http://dx.doi.org/10.1007/BF02506388
http://www.arxiv.org/abs/hep-th/9606001
http://dx.doi.org/10.1088/0305-4470/39/30/016
http://www.arxiv.org/abs/hep-th/0509213
http://dx.doi.org/10.1016/0550-3213(80)90439-3
http://www.arxiv.org/abs/hep-th/0706.0595
http://dx.doi.org/10.1088/0264-9381/23/24/008
http://www.arxiv.org/abs/astro-ph/0511789
http://www.arxiv.org/abs/astro-ph/0603187
http://www.arxiv.org/abs/hep-th/0503085
http://dx.doi.org/10.1063/1.1811372
http://www.arxiv.org/abs/hep-th/0312276
http://dx.doi.org/10.1063/1.1876873
http://www.arxiv.org/abs/hep-th/0501134
http://www.arxiv.org/abs/hep-th/0501181
http://dx.doi.org/10.1063/1.1946527
http://www.arxiv.org/abs/hep-th/0503190
http://www.arxiv.org/abs/hep-th/0610040
http://dx.doi.org/10.1016/S0370-2693(01)00595-0
http://www.arxiv.org/abs/hep-th/0104038
http://dx.doi.org/10.1063/1.532623
http://www.arxiv.org/abs/q-alg/9612029
http://dx.doi.org/10.1016/S0393-0440(97)00068-5
http://www.arxiv.org/abs/hep-th/9701081
http://dx.doi.org/10.1063/1.531241
http://dx.doi.org/10.1063/1.531241
http://www.arxiv.org/abs/hep-th/9603053
http://www.arxiv.org/abs/math.OA/0610418
http://dx.doi.org/10.1063/1.531241
http://www.arxiv.org/abs/hep-th/0705.0489
http://dx.doi.org/10.1103/PhysRevLett.81.34
http://www.arxiv.org/abs/hep-ph/9804359
http://dx.doi.org/10.1103/PhysRevD.52.3136
http://www.arxiv.org/abs/hep-ph/9504257
http://dx.doi.org/10.1016/j.nuclphysb.2006.07.012
http://www.arxiv.org/abs/hep-ph/0512090
http://dx.doi.org/10.1103/PhysRevLett.64.615
http://dx.doi.org/10.1016/0550-3213(83)90610-7
http://dx.doi.org/10.1016/0550-3213(84)90533-9


10698 R Squellari and C A Stephan

Machacek M E and Vaughn M T 1985 Two loop renormalization group equations in a general quantum field
theory: III. Scalar quartic couplings Nucl. Phys. B 249 70

[24] Ford C, Jones D R T, Stephenson P W and Einhorn M B 1993 The effective potential and the renormalisation
group Nucl. Phys. B 395 17

[25] The Particle Data Group 2006 Review of particle physics J. Phys. G: Nucl. Part. Phys. 33 1 http://pdg.lbl.gov
[26] Stephan C 2006 Almost-commutative geometry, massive neutrinos and the orientability axiom in KO-dimension

6 Preprint hep-th/0610097

http://dx.doi.org/10.1016/0550-3213(85)90040-9
http://dx.doi.org/10.1016/0550-3213(93)90206-5
http://dx.doi.org/10.1088/0954-3899/33/1/001
http://pdg.lbl.gov
http://www.arxiv.org/abs/hep-th/0610097

	1. Introduction
	2. Finite spectral triples
	2.1. Basic definitions
	2.2. Obtaining the Yang--Mills--Higgs theory

	3. The spectral triple
	4. The gauge group, the lift and the constraints
	5. Radiative corrections to the vector doublet masses
	6. The renormalization group equations
	7. The Higgs boson mass
	8. Conclusions and outlook
	Acknowledgments
	Appendix. The Krajewski diagram
	References

